

## Meeting Agenda

Water Quality Assessments and TMDL Process

Katie Conaway, VA Department of Environmental Quality

 Bacteria Source Assessment and TMDL Development

Raed El-Farhan, The Louis Berger Group, Inc.

Questions



- Learn about water quality in the tidal, freshwater portion of the Rappahannock River.
- Explain efforts that Virginia is undertaking to improve and protect water quality.
- Learn what you can do to help.

# How do we know if water bodies in Virginia are healthy?

- Perform physical and chemical monitoring on water bodies throughout the state.
- Monitor parameters such as:
- · pH
- . Temperature
- . Dissolved Oxygen
- . Health of Biological Community
- . Bacteria
- · Nutrients
- . Fish Tissue
- . Metals/Toxic Pollutants



## What do you do with the monitoring data that is collected?

Compare the data collected to the water quality standards.

- Water Quality Standards:
  - Regulations based on federal and state law.
  - Set numeric and narrative limits on pollutants.
  - Consist of designated use(s) and water quality criteria to protect the designated uses.
- Designated Uses:
  - Recreational
  - Aquatic Life
  - Public Water Supply

- Wildlife
- Fish Consumption
- Shellfish









# What happens when a water body doesn't meet water quality standards?

- Waterbody is listed as "impaired" and placed on the 303(d) list.
- Once a water body is listed as impaired, a Total Maximum Daily Load value must be developed for that impaired stream segment to address the designated use impairment.

# What is a TMDL? Total Maximum Daily Load

TMDL = Sum of WLA + Sum of LA + MOS

#### Where:

TMDL = Total Maximum Daily Load

WLA = Waste Load Allocation (point sources)

LA = Load Allocation (nonpoint sources)

MOS = Margin of Safety

## An Example TMDL



### Required Elements of a TMDL

#### A TMDL must:

- Be developed to meet Water Quality Standards.
- Be developed for critical stream conditions.
- Consider seasonal variations.
- Consider impacts of background contributions.
- Include wasteload and load allocations (WLA, LA)
- Include a margin of safety (MOS).
- Be subject to public participation.
- Provide reasonable assurance of implementation.

## TMDL Development Methodology

1. Identify all types of sources of a given pollutant within the watershed.





- 2. Calculate the amount of pollutant entering the stream from each source type.
- 3. Enter available data into a computer model. Model simulates pollutant loadings into the watershed.
- 4. Use the model to calculate the pollutant reductions needed, by source, to attain Water Quality Standards.
- 5. Allocate the allowable loading to each source and include a margin of safety.

#### Three Step TMDL Process in Virginia

TMDL Development - find the source of the pollutant & determine the reduction needed.

2.

Implementation Plan Development - identify conservation measures to fix the problem. Conservation measures are often called Best Management Practices or BMPs.



Implement the BMPs and sample to see improvement.



## What does this mean for the Rappahannock River?

- TMDL study is being done for a portion of the Tidal Freshwater Rappahannock River.
- Does not meet the Recreational Use exceeds the water quality standards for Fecal Coliform and E. Coli Bacteria.

| Stream Name           | Locality                                                  | Impairment                                   | Area (mi²) | Upstream Limit                                          | Downstream<br>Limit                                             |
|-----------------------|-----------------------------------------------------------|----------------------------------------------|------------|---------------------------------------------------------|-----------------------------------------------------------------|
| Rappahannock<br>River | Fredericksburg Caroline King George Spotsylvania Stafford | Fecal<br>Coliform<br>and E. Coli<br>Bacteria | 3.8        | Fall Line at the<br>Route 1 Bridge in<br>Fredericksburg | Confluence with<br>Mill Creek,<br>below the Route<br>301 Bridge |



#### **Exceedance Rates for Rappahannock River**

|  | Monitoring<br>Station | Station Location                                                               | Exceedance Rate Recorded for the 2006 Assessment (01/01/2000 – 12/31/2004) |                            |
|--|-----------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|
|  |                       |                                                                                | Fecal Coliform                                                             | E. Coli                    |
|  | 3-RPP110.57           | Route 1 Bridge                                                                 | 6 of 13 samples<br>(46.2%)                                                 | 5 of 11 samples<br>(45.4%) |
|  | 3-RPP107.91           | One hundred yards below the<br>Fredericksburg Wastewater<br>Treatment Facility | 3 of 16 samples<br>(18.8%)                                                 | N/A                        |
|  | 3-RPP104.47           | 100 yards below the Massaponax<br>Creek Wastewater Treatment<br>facility       | N/A                                                                        | 2 of 7 samples<br>(28.6%)  |
|  | 3-RPP098.81           | Buoy 112                                                                       | N/A                                                                        | 2 of 13 samples<br>(15.4%) |
|  | 3-RPP091.55           | Buoy 89                                                                        | N/A                                                                        | 3 of 13 samples<br>(23.1%) |
|  | 3-RPP080.19           | Route 301 Bridge                                                               | N/A                                                                        | 2 of 14 samples<br>(14.3%) |

# What are Fecal Coliform Bacteria and E. Coli Bacteria?

Coliform Bacteria: Commonly found in soil, decaying vegetation, animal feces, and raw surface water.

#### Escherichia coli:

- subset of fecal coliform bacteria.
- Correlate better with swimming associated illness.

#### **Fecal Coliform:**

- Found in the digestive tract of humans and warm blooded animals.
- Indicator of the potential presence of pathogens in water bodies.

## Potential Sources of Fecal Coliform Bacteria











# What is the Water Quality Standard for Bacteria?

| Indicator      | Status  | Instantaneous<br>Maximum<br>(cfu/100mL) | Geometric<br>Mean<br>(cfu/100 mL) |
|----------------|---------|-----------------------------------------|-----------------------------------|
| Fecal Coliform | Old     | 1,000                                   | 200                               |
| E. coli        | New     | 235                                     | 126                               |
| Fecal Coliform | Interim | 400                                     | 200                               |

- Changes went into effect on January 15, 2003
- Both New E. coli and Interim Fecal Coliform criteria apply
- Fecal coliform criteria will be phased out entirely once 12 *E. coli* samples have been collected or after June 30, 2008
- In order for a water body to be listed as impaired:
  - There must be at least two samples that exceed the water quality criterion.
  - Greater than 10.5% of the total samples must be exceedances.

## Tidal Freshwater Rappahannock Bacteria TMDL Project Milestones





**Katie Conaway** 

Virginia Department of Environmental Quality

**Regional TMDL Coordinator** 

Phone: (703) 583-3804

E-mail: mkconaway@deq.virginia.gov

**Bryant Thomas** 

Virginia Department of Environmental Quality

**Water Quality Programs** 

Phone: (703) 583-3843

E-mail: bhthomas@deq.virginia.gov

Raed El-Farhan

The Louis Berger Group, Inc.

Phone: (202) 303-2645

E-mail: relfarhan@louisberger.com



